
PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

A Novel WordPress Plugin WP KeepSoul To
Detect And Mitigate Malicious Code And

Maintain Business Continuity In The WordPress
Platform

DETAILED PROJECT PAPER

Author and Developer

PRANEETHRAJ

2022-2023

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

CONTENTS

Page No

CHAPTER 1. ABSTRACT 1

CHAPTER 2. INTRODUCTION 2
2.1 Aims, Objectives and Contributions 3

2.1.1 Research Aim 3
2.1.2 Research Objectives 3

CHAPTER 3. LITERATURE REVIEW 5
3.1 WordPress Vulnerabilities and Attack Vectors 5
3.2 Existing Malware Detection Methods and Obfuscated JavaScript Detection 7
3.3 Malicious Keywords Extracted for Implementation as Detection Keywords and
Characters. 9
3.4 Analysis of existing solutions for understanding knowledge gaps 9
3.5 How the Literature Review Helps to Curate the Artefact 10

CHAPTER 4. METHODOLOGY 12
4.1 Ethical Disclosure 13
4.2 Testing Environment and Dataset 13
4.3 Classification Of Malware Used for Testing 13
4.4 Modules Developed and Their Functions 17

4.4.1 Module 1: Activation Module; download WordPress from GitHub and create
necessary files and folders for operation. 17
4.4.2 Module 2: Full Scan Module uses the PHP file comparison function to detect
malicious files and restore legitimate files. 18
4.4.3 Module 3: Quick Scan Module; use keywords and characters frequency set to
detect malicious files and restore legitimate files. 19
4.4.4 Module 3.1: List of keywords maintained in a file that feeds quick scan
detection (rules.php). 20

4.4.4 a) Algorithm of the quick scan process 21
4.4.5 Module 4: Log Module; To record all full and quick scan incidents. 21
4.4.6 Module 5: Email Module; PHP mail module to send the administrator
quarantined files and log files. 22

4.6 Building Attack Simulation 24
4.7 Attack Simulation 25

4.7.1 First Method: Injection Script Working 25
4.7.2 Second Method: Manually place specific malware 26

CHAPTER 5. TEST RESULTS 27
5.1 Malware Test Results 27

5.1.1 Result Comparison Criteria 27

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

5.1.2 Effects of Malware Before Scan 28
5.2 Module Test Results 30

5.2.1 Module 1: Activation Module 30
5.2.2 Module 2: Full Scan Module 32
5.2.3 Module 3: Quick Scan Module 33
5.2.4 Module 4: Log Module 34
5.2.5 Module 5: Email Module 35
5.1.7 Artefact in Action 37

CHAPTER 6. EVALUATION AND DISCUSSION 40
6.1 Results Evaluation and Limitations Based on Modules 40

6.1.1 Module 1: Activation Module 40
6.1.2 Module 2, 3 & 3.1: Full Scan and Quick Scan Module 40
6.1.3 Module 4: Log Module 42
6.1.4 Module 5: Email Module 42

CHAPTER 7. CONCLUSION AND FUTURE WORK 43

CHAPTER 8. APPENDIX LIST 44
A. Installation Instruction 44
B. Source Code Link: https://gitlab.uwe.ac.uk/p2-praneethraj/wp-keepsoul 44
C. Walkthrough Video Link: https://youtu.be/E_WOklVnIH8 44
D. Malware scan report - filtered as full scan with malware classification 44
E. Malware scan report - filtered for quick scan with malware classification. 44
F. Record of supervisor meetings. schedule and notes. 44
G. Scan log from the testing environment - Combined full scan & quick scan. 44

CHAPTER 9. REFERENCES 45

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

LIST OF TABLES

Table 01. Comparing the existing similar plugins and their capabilities is questioned to
understand the gap

10

Table 02. List of characters and keywords shortlisted to implement in the quick scan. 11

Table 03. Classified malware based on its use and named based on date as mentioned in
(Pejcic, 2022)

14

Table 04. Selected Malware that created critical issues in WordPress history 15

Table 05. Full Scan results, Limited (Complete list in Appendix D) 32

Table 06. Quick Scan Results 34

Table 07. Entry of four different logging cases 34

iv

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

LIST OF FIGURES AND FLOWCHART

Figure 01. The idea of adversary acts on website and server. 16

Figure 02. Code snippet for downloading a new copy of the installed version. 17

Figure 03. Code snippet for comparing existing and new copies of files. 18

Figure 04. Code snippet of rules.PHP file 21

Figure 05. Code snippet used to generate log.csv file. 21

Figure 06. wp-mail() - a PHP mailing code snippet from the WordPress development repo. 22

Figure 07. Time taken by different plugins for different metrics, as mentioned. 23

Figure 08. Code snippet from inject.PHP script used. 25

Figure 09. 28.01.2021 - index.PHP malware effects on the testing website. 28

Figure 10. 09.03.2022 worker.PHP malware effects on the testing website. 28

Figure 11. 08.10.2021 malware effects on the testing website. 29

Figure 12. 18.05.2021 malware effects on the testing website. 29

Figure 13. 04.02.2022 - malware effects on the testing website. 30

Figure 14. Creation of directories and downloading WordPress. 31

Figure 15. Creation of directories and downloading WordPress. 31

Figure 16. Snapshot of logs recorded. 35

Figure 17. Email received after plugin activation. 36

Figure 18. Email received after a full scan. 36

Figure 19. WP KeepSoul after activation in dashboard page 37

Figure 20. WordPress Dashboard Settings panel with plugin access. 37

Figure 21. Plugin Page, with Instructions and option to perform a scan and download log. 38

Figure 22. Notification after completing Quick Scan with the time taken. 39

Figure 23. Notification after completing Full Scan with the time taken. 39

Figure 24. Snapshot of a full scan, representing the average time of the full scan. 41

Figure 25. Snapshot of scan logs. 42

Flowchart 01. Flowchart of the process flow of the full scan module. 19

Flowchart 02. Flowchart of the process flow of the quick scan module. 20

v

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

LIST OF ABBREVIATIONS

URL Uniform Resource Locator

SMART Specific, Measurable, Achievable, Relevant, Time-bound

URI Uniform Resource Identifier

DDOS Distributed denial of service

VPS Virtual Private Server

CDN Content Delivery Network

API Application Programming Interface

GUI Graphical User Interface

PHP Hypertext Preprocessor (a programming language)

CMS Content Management System

SEO Search Engine Optimisation

CVSS Common Vulnerability Scoring System

XSS Cross-Site Scripting

OWASP Open Web Application Security Project

TAC Theme Authenticity Checker

SQL Structured Query Language

CPU Central Processing Unit

RAM Random Access Memory

APT Advanced Persistent Threat

HTTP Hypertext Transfer Protocol

vi

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

CHAPTER 1. ABSTRACT

Threat actors may deliberately inject and upload malicious scripts and files to take over web

applications and servers. In web applications, malicious scripts often come with novel

obfuscation techniques; therefore, it becomes difficult to match the signatures and detect

malware, even if the underlying malicious script(s) had been identified earlier. Sucuri highlights

that, out of all content management systems used, WordPress was the most targeted. The

statistics indicate that 61.65% of malware redirects users to some malicious site or steals credit

card information from websites by injecting malicious code(Garand et al., 2021). To solve this

issue, we proposed a novel WordPress plugin WP-KeepSoul that aligns with the rule of secure

software development from Cybok: "Keep the design of the system as simple and small as

possible" (Williams, Massacci and Gary, 2021). The proposed solution detects any malicious

code in the core files and removes arbitrarily uploaded files. Additionally, an automated email

system sends a complete log report and a zip of the quarantined files to the site administrator.

We use more than 3,000 samples of JavaScript malware from HynekPetrak’s git repository

(Petrak, 2022) and 91 Hypertext Preprocessor (PHP) malware from Pejcic’s git repository

(Pejcic, 2022) to test the artefact and compare results against the existing state-of-the-art

solutions. The outcome was that WP-KeepSoul stood out in the detection with only three errors.

The time required to detect and bring the website to a clean state was just 9.27 seconds, which

was significantly quicker than existing solutions. The literature review aimed to identify current

issues, analyse existing solutions, and identify potential knowledge gaps by answering relevant

technical questions. We follow a module-wise structure across the report, and a quantitative

analysis of plugin performance and hit-and-miss scan rate with time efficiency is discussed.

Finally, a critical evaluation of achieved aims and objectives and their outcome with the

limitations are discussed. This evaluation gives a clear pathway to improving the artefact,

enhancing efficiency in different dimensions.

Keywords: anti-malware, WordPress, plugin, version-independent solution, simple and quick

recovery.

1

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

CHAPTER 2. INTRODUCTION

The website is the company's digital face, representing its identity with information like who it is,

what it does, and who its clients and customers are. Many companies regularly use their web

applications to carry out primary business operations. WordPress is a popular open-source

Content Management System (CMS), and 65% of all websites use WordPress as a framework

(W3Techs, n.d.). WordPress allows one to create various web applications such as organisation

portfolio sites, online stores, business websites, portfolios, podcasts, online marketplaces and

even e-learning platforms (Tuca, 2022).

In this chapter, we will first provide an overview of the background and main idea of the study.

We will then present our research using a Specific, Measurable, Achievable, Relevant,

Time-bound (SMART) structured approach. Next, our research goals, objectives, and questions

will be outlined, along with the purpose of the study. Lastly, we will address any limitations of the

research.

During a cyber attack, websites may experience defamation, long-term service disruptions, and

potential theft of sensitive client and customer information, leading to significant financial and

reputational harm. Although companies and developers try to implement many existing research

solutions and use anti-malware plugins to protect their websites, around 4.7 million websites are

hacked annually, an estimated 13,000 per day (Moran, 2022).

The research question for this study is to develop a solution using PHP language to protect a

website from malicious file upload or script injection attacks by automatically fixing it with

minimal downtime. It is essential to address the current manual process of comparing malicious

files with original files and replacing them or using automated methods to restore the complete

backup to a previous state can be onerous, involve many tasks and configurations, and result in

extended downtime for larger websites.

Limitations are inevitable, and research takes more time than evolution in technology. Hence, to

develop the methodology, the research papers about the latest WordPress plugins were bare

minimum and the time required to implement email and the quick scan modules in methodology

was inadequate. Despite it, the output justifies the requirement and requires further research

and improvement.

2

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

Finally, the structure of the report follows an in-depth literature review of WordPress and the

dimensions of malware, including finding the proper and specific technical gap in existing

solution providers, followed by the methodology, which demonstrates the development artefact

based on five different modules and performance analysis. Then comes the testing phase,

where the results of attack simulation and detection with the quantitative analysis are described.

Finally, evaluation and discussion comprise a critical review of the developed artefact, a

discussion of its use with limitations, and in the end, future work and relevant references are

mentioned.

2.1 Aims, Objectives and Contributions

The primary focus of the dissertation, known as the research aim, is discussed in this section.

Additionally, the research objectives, which depict the intended specific outcome and

achievement of the research, are also outlined in this section. A novel method to solve the

existing problems is highlighted, and the contribution of this research in providing a simple and

easy solution is highlighted.

2.1.1 Research Aim

The aim is to create a plugin for the WordPress platform that addresses and reports the

presence of malware and misconfigured files. This plugin will assist website developers and

administrators in efficiently recovering infected websites and minimising the time and effort

required for recovery.

2.1.2 Research Objectives

The research objectives cover literature study, gap analysis, developing artefact, analysing

developed plugins, and testing with various malware. Major bullet points are listed below,

covering all the aspects of the project:

● To determine the most common types of malware currently targeting WordPress

websites.

● To evaluate the effectiveness of existing anti-malware solutions and identify potential

gaps or areas for improvement by literature survey.

● To design and develop an anti-malware plugin using PHP that can effectively detect and

remove a wide range of malware threats without using a Content Delivery Network

3

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

(CDN), Application Programming Interface (API) or malware signatures with the least

detection time.

● To test and validate the performance of the developed antimalware plugin through the

p3-plugin profiler tool and simulate the real-world attack on a WordPress website to get

plugin detection results.

● To evaluate the security of the developed plugin and to investigate the efficiency of

detection and the time taken.

● To document the findings, critically evaluate the result, and then provide knowledge

about areas of improvement in the developed artefact.

2.1.3 Project Contribution

In this academic project, we introduce a novel approach for detecting file or script injection

malware effectively; it also detects missing core files and deletes any additional files maliciously

uploaded. Additionally, our system can restore only a specific infected file rather than the entire

backup, minimising the impact on the system resources and maintaining better business

continuity.

One of the critical features of our method is that it does not require malware signatures or

supporting API, which makes the system more efficient and cost-effective. Our approach also

does not require a malware signature for the full scan module, making it even more efficient.

With all of the features mentioned above, our approach significantly improves the security of

WordPress websites and helps various stakeholders of development and cybersecurity teams to

understand and mitigate issues.

4

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

CHAPTER 3. LITERATURE REVIEW

A critical literature study was conducted to understand and create a base for our study and

research, including peer-reviewed papers, technical papers, whitepapers, and WordPress plugin

documentation. The study is divided into three main contents and context in mind, i.e.,

WordPress vulnerabilities, existing malware detection methods, obfuscated JavaScript detection

methods, and existing solutions analysis with test questions. The overall takeaway of the current

method's advantages and disadvantages and how the literature review helps curate the artefact

is discussed at the end of the section.

3.1 WordPress Vulnerabilities and Attack Vectors

The OWASP is a dependable resource for understanding web vulnerability research. The article

understanding file upload discusses risk factors, bypass and protection methods, and

prevention methods. Incidents may involve total system compromise, excessive use of

database resources or disk space, forwarding attacks to back-end systems, client-side attacks,

or web defacement to damage the reputation (OWASP et al., 2020). The core files of a web

application are an essential component that is targeted in many types of attacks mentioned

above. By protecting these files, the potential damage caused by vulnerabilities can be

minimised.

According to the report of Sucuri from 2022, WordPress is the most targeted CMS, with 61.65%

of malware causing URL infection that can redirect users to malicious sites or steal credit card

information on e-commerce sites. Additionally, 60.04% of attacks resulted in a backdoor that

allowed unauthorised access to the dashboard through secret channels, compromising the

environment. The third most common type of attack was Search Engine Optimisation (SEO)

spam, which affected 52.60% of sites by setting up redirects, publishing spam posts, and

inserting links to improve search engine optimisation and direct traffic to third-party websites

(Garand et al., 2021). All of these issues have file or script injection as their starting point, which

is the focus of our research. The report also emphasises the promotion of GoDaddy products as

a solution to these problems; using them is out of the scope of our research.

According to a 2021 survey by Patchstack, there is a significant concern about file upload

vulnerabilities, which our artefacts aim to remedy. The 2021 study was more thorough and found

a 150% increase in vulnerabilities that popular plugin developers never patched. Analysing

5

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

usage statistics, we discovered numerous unknown attacks related to file upload continued

even after updates and patches. Additionally, it became difficult to remove vulnerable plugins

because they had direct dependencies on the website and database. Out of all the

vulnerabilities in the report, file upload was the main entry point for various attacks and had a

Common Vulnerability Scoring System (CVSS) value of 10; as it is a critical issue, addressing

file upload vulnerability is a major focus of our project. Furthermore, a study of 58,000 popular

plugins revealed that 98.22% of the vulnerabilities stemmed from plugins and external code

rather than WordPress. Surveys of web developers and security managers, including internal

employees and freelancers, show that 70% express concern about web security due to the

proliferation of vulnerabilities (Patchstack, 2021). Overall, this article focused on the problem of

vulnerabilities, which helped us comprehensively understand various vulnerabilities and user

requirements.

Few studies exist on hacked WordPress websites, and the available research is limited. A case

study from WP HackedHelp discusses the effects of spam link injection on WordPress websites

(Expert, 2020). This malicious activity is initiated by hackers to gain access to a website, such

as through reverse shells, spam keywords, inserting malicious hyperlinks, spamming customer

databases, creating defamatory content, and displaying hackers' ad banners. The case study

points out two main ways hackers exploit WordPress vulnerabilities: SQL injection and incorrect

folder permissions. These vulnerabilities allow spam files and links to enter WordPress themes,

plugins, and core files. The authors recommend using the Theme Authenticity Checker (TAC)

plugin but note that the TAC plugin is outdated and deprecated. They also suggest using an

exploit scanner, which may not detect the latest or zero-day attacks; this information helps to

identify weaknesses and dependencies in WordPress security.

WP Hackedhelp website states that many detection techniques for identifying and removing

malicious code in WordPress require expert knowledge. For example, using nulled themes or

cracked WordPress themes that do not require activation keys increases the risk of infection as

these themes do not receive updates and may contain malicious code. Signs of a hacked

website include Google warning messages, .htaccess pirate, pop-ups and constant crashes.

The article (Expert, 2018a) recommends some best practices, but these options are inefficient

once a website has been hacked.

Portswigger, a web application security software company, published an article discussing the

mechanisms and impacts of file upload vulnerabilities. The article states that these

6

https://www.merriam-webster.com/thesaurus/inefficient

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

vulnerabilities can arise due to developer oversight, exploitation of dependencies, and errors in

executable file handling that can expose sensitive information, such as source code.

Additionally, the article notes that flawed file type validation and unrestricted file upload can be

exploited and suggests implementing defence mechanisms and patches as solutions

(Portswigger, n.d.). However, these solutions are often incomplete, may require multiple fixes to

address a single issue, and may not apply to older versions.

According to the SANS Institute's report, several mainstream concepts for securing file uploads

exist. These include creating a new file with a numerical identifier, setting a maximum file size

limit for uploads, allowing the uploading of zip or compressed files to prevent the extraction of

large files on the server, converting file types to strip out malicious features, implementing file

permission control, adding authentication or allowing only authenticated users to upload files,

and limiting the number of files that can be uploaded (Ullrich, 2009). These ideas provided

insight into the security features that should be included in our artefacts.

In 2012, author Dalili identified several significant issues related to file uploads, including

altering core functionality, bypassing protections, making websites vulnerable, causing a denial

of service, and listing the most vulnerable files for attacks (such as .htaccess, web.config,

crossdomain.xml, clientaccesspolicy.xml, global.asa, and global.asax). Even though this report

is from 2012, certain exploits, such as the FCKeditor bypassed anti-malware protection by

uploading a .htaccess file and running a shell inside, remain relevant and can be found on

legacy websites(Dalili, 2012). While this information is still useful for identifying sensitive files

that can be implemented in the quick scan module of our artefact, the patches mentioned in the

report are outdated; and cannot be used to fix recent file upload vulnerabilities.

3.2 Existing Malware Detection Methods and Obfuscated JavaScript
Detection

A promising browser-based JavaScript malware detection and prevention method presented by

Livshits, Zorn and Seifert in 2010 describe a solution called Zozzle uses the abstract syntax of

JavaScript structure features fed to a Bayesian classifier. The report shows that this approach

has a low number of false positives and can detect malware quickly (Livshits, Zorn and Seifert,

2010); however, it requires extensive training, and its dataset may change over time, leading to

decreased detection quality year after year.

7

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

In 2020, Kasturi and a team of researchers developed YODA, a solution that combines key

elements such as metadata analysis of website backups and codes analysis (both syntactic and

semantic) to understand and identify malicious plugins. While metadata and plugin source code

analysis may be faster, the combination of malicious activity detection involves complex

mathematical equations that were only validated with 120 websites from 2008 (Kasturi et al.,

2022). This sample size is outdated and small, making it difficult to verify the effectiveness of the

YODA artefact. The study also showed that static websites are more susceptible to attacks;

however, since WordPress and its legitimate plugins release patches and fixes frequently, there

is no need to analyse website backups from 2008. Additionally, metadata analysis may yield

inaccurate results today as the code and dataset for plugins change with updates and

customisation by the user according to the website's requirements.

Detection of obfuscated malicious JavaScript code, presented by Alazab et al. in 2022, involves

a feature extraction process followed by three stages of training and testing the model. Based

on their study, 170 different features were extracted and tested. They also compared JSOD to

the state-of-the-art approaches, Zozzle and Nofus, for detecting obfuscated benign and

malicious scripts (Alazab et al., 2022). The experimental results showed that JSOD could detect

obfuscated scripts and their sophisticated variations. Conversely, the dataset was imbalanced,

so the authors used an independent classifier approach to balance it. This paper supports the

list of features extracted, which will help add keywords for the "quick scan" module planned in

our project.

In 2018, He, Xu, and Cha proposed a combined technique for detecting malicious JavaScript

code that combines static and dynamic analysis. The static analysis is based on obfuscated

code, URL, functional behaviour, and character-based approaches, which are strategically

classified and counted using an occurrence-based approach. The dynamic analysis extracts

feature based on function invocation, data manipulation, and code structure and use

classification-based models for detection (He, Xu and Cha, 2018). The authors used the

Random Forest classifier to create the malicious JavaScript code detection model. This

approach demonstrated the ability to detect 100% of malicious scripts. Despite this, the

implementation could be more efficient, and it helped to understand more about JavaScript

obfuscation, which is an input for the scanning method.

A technique using n-gram features extracted from an abstract syntax tree and a balanced

dataset to detect malicious patterns through frequency testing with a random classifier is

8

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

presented in Fass et al.'s research in 2018. While this approach achieved a high detection rate

for suspicious scripts based on frequency and number of values, it may not be effective for

detecting short, simple malicious codes; it may result in false positives for shorter, less

structured codes (Fass et al., 2018).

A solution named SAISAN, presented by Md et al. in 2017, detects content injection

vulnerabilities. Their approach is only effective for versions 4.7.0 and 4.7.1 of WordPress;

currently, this solution is not feasible in real time. Conversely, there is no way to modify the

artefact for later versions as there was a major code update in WordPress core files after

WordPress version 5.2 (Md et al., 2017). Despite this, similar vulnerabilities can still be present

due to specific plugins and cause similar damage. This report helped to understand the

implementation of solutions effectively to solve a broader range of problems.

3.3 Malicious Keywords Extracted for Implementation as Detection
Keywords and Characters.

In the study by Moog et al. in 2021, the authors delve into the techniques used to hide malicious

content through specific keywords and strings. Six code transformation techniques are

identified: randomisation, data obfuscation, logic structure obfuscation, dynamic code

generation, environment interaction, and code protection. The paper also discusses various

code transformation tools, such as obfuscator.io, jsfuck, gnirts, custom encoding, and js minifier,

that can be used to obfuscate code in different ways. Our main takeaway from this research is a

deeper understanding of obfuscation techniques and the identification of commonly used

keywords.

3.4 Analysis of existing solutions for understanding knowledge gaps

Investigation of widely used anti-malware was conducted and determined some technical gaps

that still need to be addressed in specific points, such as functionality, modules used, and user

reviews. Our gap analysis highlights the specific questions to develop a practical solution, as

shown in Table 01. Consequently, the development of WP-KeepSoul is being undertaken with

the inclusion of attributes that are not present in other widely used plugins but are highly sought

after by many users globally.

9

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

Table 01. Comparison of the existing similar plugins and their capabilities questioned to
understand the knowledge gap.

3.5 How the Literature Review Helps to Curate the Artefact

The literature review provided inputs that revealed many extant vulnerabilities and deficiencies.

These inputs illuminated the understanding of issues that still need to be addressed by many

anti-malware plugins, detection and prevention systems. Literature reading also helped to

question, “what if there is a solution which will detect these malicious activities irrespective of

the domain and environment? which platform is the number one target from attackers? Why are

many studies based on Abstract Syntax Tree (AST) rather than direct keywords?” Moreover, this

thought helped to explore different detection methods, JavaScript malware, and obfuscation

techniques, which are discussed further in this section.

10

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

A comprehensive literature review was undertaken to identify the essential functions and

keywords commonly used in malicious code, drawing on a range of sources, including Alazab et

al. (2022), Fang et al. (2020), Patil and Patil (2017), Shah (2016), Fass, Backes, and Stock

(2019), and Gupta and Gupta (2016, 2016b). The findings of this review are presented in Table

2, which lists the keywords and characters that will be used for detecting malware in a quick

scan.

Table 02. List of characters and keywords shortlisted to implement in the quick scan.

11

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

CHAPTER 4. METHODOLOGY
From the literature and analysing the current requirement in the market, a solution is developed

to cover most aspects to fill the existing gap in the website protection field. The core

functionality of the artefact is to detect the malicious files using files from the backup to match

the existing copy by character level comparison and keywords from Table 2 for the

character-based match rather than an abstract syntax tree. Moreover, bifurcating the whole

structure into two parts, a quick scan and a full scan for detection, can help to identify the issues

faster. Also, the complete artefact is divided into five parts, modules one to five format is

followed throughout all the phases of methodology, testing, results, and evaluation for better

user readability and function understanding. This idea of artefact, i.e. retaining core applications

files and comparing, can be implemented for platforms like Joomla, Drupal, Magento and other

content management systems. However, in order to provide a solution for the wider
community, we implemented a plug-in solution for the WordPress platform.

The necessary modules for the artefact, along with their preliminary tasks, are outlined as

follows:

Module 1: Activation Module; download WordPress from GitHub and create necessary files and

folders for operation.

Module 2: Full scan module; uses the PHP file comparison function to detect malicious files and

restore legitimate ones.

Module 3: Quick scan module; uses keywords and characters to detect malicious files and

restore legitimate files.

Module 3.1: List of keywords maintained in a file used to feed quick scan detection.

Module 4: Log Module; to record all the full and quick scan incidents.

Module 5: Email module; PHP email module to send the administrator quarantined and log files.

12

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

4.1 Ethical Disclosure

We prioritise ethics and transparency throughout every aspect of our work. All documents were

legally obtained and accessed through our university account during the literature review

process. Our innovative artefact is developed using different built-in functions and used from the

official WordPress development website, and the mailing function was sourced from GitHub and

properly referenced. It does not store email addresses, instead utilising built-in functions to

identify them. The malware data set was obtained from GitHub, which allows for open use. The

testing domain and server are both owned by the author and not publicly disclosed. No harm

was inflicted upon any organisations or individuals during the development and testing process.

Our artefact is designed to not interfere with user data when deployed in the public sector.

4.2 Testing Environment and Dataset

Due to frequent data transfer while downloading the WordPress and mailing logs, the plugin will

not function properly in a localhost environment. Therefore, the domain

https://devmaltest.prbhat.com, which belongs to the author, is utilised for testing purposes. The

plugin requires at least 2 gigabytes of RAM, two gigahertz CPU, a 10 MB input/output threshold,

and unlimited bandwidth. For seamless operation, the website should run with PHP 7.4 or later

with WordPress 5.2. This standard low-configuration setup was chosen to showcase the plugin's

optimised performance and ability to work in low-resource environments.

4.3 Classification Of Malware Used for Testing

The latest malware package, which includes two packages from the GitHub repositories of

Pejcic and Petrak, was tested against the developed artefact. These samples have a commit

history till 07 December 2022 and have impacted different attacks since 2016. Tools such as

Malware Scanners and Simple Virus Scanners, commonly used in cPanel, rely on these

collections of samples for detection. Details about two sets of malware collection are classified

by uploading every file to the Virustotal and are mentioned under its malicious intention criteria

in Table 03.

13

https://devmaltest.prbhat.com/
https://devmaltest.prbhat.com/

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

- Manually classified by decoding and research.
Table 03. Classified malware based on its use and named based on date as mentioned in (Pejcic,
2022).

The first collection from Petrak contains forty thousand samples of different kinds of obfuscated

JavaScript malware (Petrak, 2022) and is one of the best packages containing malware from

2015 to 2019. The second collection is from Pejcic, with over a hundred malware samples

covering the most attacks since 2019(Pejcic, 2022c). Both impacted websites and web

applications in different files using file upload or injection vulnerabilities. Many of these still exist

and are considered to impact badly either by stealing data, mining crypto from the browser,

downloading ingression tools from the background, redirecting users to malicious sites, or

scripts to compromise clients for Distributed Denial of Service (DDoS) over websites and

servers; all these classifications cover most of the malware types being used in a real-time

environment for the attack.

14

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

The Table of Scan along the report has the following attributes and represents them as
mentioned below.

● Malware Tested - The malware used for testing.

○ Format of malware Date_Detected - malware name with extension.

● Type - Type of attack method used for simulation.

○ Manual: Uploaded malware to a specific location as it attacks.

○ Injection Script - Appended malware to existing files using inject script to target

specific files.

● Full Scan / Quick Scan - The type of scan performed, mentioning the relevant result.

○ Successful or unsuccessful in scan completion.

○ N/A signifies the scan is out of scope for the particular malware type.

● Time Taken - Time taken to finish the scan in seconds units.

● Comments - Review the result of the artefact.

These entities and attributes are carried out throughout the report.

Table 04. Selected Malware that created critical issues in WordPress history.

Table 04 consists of the top and highly volatile malware that caused issues on different websites

worldwide. Mentioning the short description of each goes as follows.

10.12.2020 - Coli.PHP - “The malware itself is a PHP backdoor dropper that creates a custom

function that uses curl and file_put_contents to download malware from a third party URL which

the attacker provides in an HTTP request (GET or POST) to the infected website” (Luke, 2020).

A tool used to download additional malware to gain control of the website and server used.

19.04.2022 wp-crypto.PHP - From the TrendMicro report, this malware behaviour is defined as:

“This backdoor arrives on a system as a file dropped by other malware or as a file downloaded

unknowingly by users when visiting malicious sites. It executes commands from a remote

15

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

malicious user, effectively compromising the affected system

”(‘Backdoor.PHP.WEBSHELL.SBJKXRY - Threat Encyclopedia - Trend Micro BE’, 2022). The

backdoor for the website and server is able to compromise the complete system.

04.04.2020 - leafmailer.PHP- Sucuri lab reports suggest, “Mailers is a category of scripts that

hackers install on compromised servers to send out spam and anonymous emails“

(‘PHP.hacktool’, 2019). A mailing malware used services as a spamming bot that indirectly

caused blacklisting of the originating domain.

26.10.2020- ” APT29 has been observed crafting targeted spear phishing campaigns leveraging

web links to a malicious dropper; once executed, the code delivers RemoteAccess Tools (RATs)

and evades detection using a range of techniques” (Investigation, 2016). Altogether, this was

one of the malware used by APT29 to achieve specific malicious goals.

An example of typical malware action that compromises a website and server, exploiting users

and the target website, is illustrated in Figure 01.

Figure 01: Idea of adversary acts on website and server. (Kino, 2021).

The result section discusses other malware and its effects as it caused considerable changes to

the website.

16

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

4.4 Modules Developed and Their Functions

4.4.1 Module 1: Activation Module; download WordPress from GitHub and create
necessary files and folders for operation.

Activation of the plugin is a point where the plugin gets calibrated according to WordPress

configuration. Here, folders such as backup, quarantine, and WordPress are created. The

backup directory serves as a designated storage location for custom files related to a specific

website, with a focus on the wp-config.php file. The implementation of this concept helps to

efficiently organise and scan these critical files, thereby promoting the smooth functioning of the

full scan. The 'wp-config.php' file is automatically copied to the backup folder and emailed to the

administrator each time after activation. The process of copying and mailing is of paramount

importance as it preserves the website-specific configuration. The importance of this procedure

is outlined in Module 5, which has the entire structure of the email module.

After that, the quarantine folder serves as storage for any infected files, misconfigured or

uploaded with malicious intent. The WordPress folder is employed to maintain an unzipped

version of WordPress. This allows for the retrieval of a genuine copy of the WordPress core files

for each iteration of the full scan. The process of re-downloading a new copy of WordPress for

each full scan serves a dual purpose. Firstly, it ensures that any potentially infected files are

replaced during the scan. This helps to maintain the integrity of the artefact by providing an

additional layer of protection. Secondly, the periodic downloading of a fresh copy of the

necessary files helps to confirm new files are used for every scan.

Figure 02. Code snippet for downloading a new copy of the installed version.

17

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

4.4.2 Module 2: Full Scan Module uses the PHP file comparison function to detect
malicious files and restore legitimate files.

A simple yet effective method to scan all the files in the WordPress file system, and every file in

the website will be compared except files in the wp-content directory. Using the if condition, as in

Figure 03, every existing running file is compared against the downloaded files from the plugin

WordPress directory. In the event that a discrepancy in characters is detected between the

running file and the downloaded file, those files will be removed and replaced with a legitimate

downloaded file. This approach avoids the downtime typically caused by other plugins, which

often require the replacement of the entire backup or extensive manual verification through

every file.

Figure 03. Code snippet for comparing existing and new copies of files.

Upon completing the full scan, any infected files will be moved to the quarantine directory and

compressed. The quarantine folder will then be emailed to the administrator using the PHP mail

function. (‘wp_mail() | Function’, n.d.). This step will help the cyber forensic team to investigate

the attack, understand the malware type, and block these attacks from occurring again.

18

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

Flowchart 01: Flowchart of the process flow of the full scan module.

Using a simple WordPress cron job, we can automate the full scan process. The WordPress

cron job is a scheduled task that automatically triggers at predetermined intervals within the

WordPress environment. These tasks include checking for updates, publishing scheduled posts,

and optimising the database. They can be set to occur at specific times or regular intervals. The

full scan module can be accessed through the URL:

https://[domain]?run=wp-keep-up&type=full-scan, and can be set to run at specific intervals as a

cron job to meet the needs of the administrator. Overall, an explanation of the full scan process

involves the detection, replacement, recovery and restoration, and logging of all actions ends

here.

4.4.3 Module 3: Quick Scan Module; use keywords and characters frequency set
to detect malicious files and restore legitimate files.

The concept of the quick scan here is to check the specific files against the list of words and

characters often found in malicious scripts. If there is a match or some characters are used

excessively than originally required, they will be moved to quarantine and replaced with begin

file from the downloaded directory.

The quick scan only includes a specific set of files, such as index.php, wp-links-opml.php,

wp-trackback.php, xmlrpc.php, wp-settings.php, wp-mail.php and wp-cron.php. It is worth noting

19

http://www.example.com/

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

that, according to data from a recent attack on November 15, 2022 (Rees, 2022), all of the

above-mentioned files were affected. This attack report motivated the inclusion of these files in

the quick scan, as they are known to be frequently and regularly targeted in many other attacks.

Flowchart 02. Flowchart of the process flow of the quick scan module.

The quick scan module can be accessed through the URL:

https://[domain_name].com?run=wp-keep-up&type=quick-scan and can be set to run at specific

intervals as a cron job to meet the needs of the administrator.

4.4.4 Module 3.1: List of keywords maintained in a file that feeds quick scan
detection (rules.php).

The purpose of this module is to compile a list of keywords and characters into a specific file

which can then be used to feed the Quick scan module. This list is developed based on an

analysis of keywords from the literature review and additional research on the latest WordPress

malware reports from (Patchstack, 2022) and Sucuri. The characters and words are checked

individually by placing them into an array. A code snippet which shows the structure of keywords

and characters used under the array to feed a quick scan is shown in Figure 04 of the rules.php

file.

20

http://www.example.com/

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

Figure 04. The code snippet of the rules.php file; shows words and characters used for matching.

4.4.4 a) Algorithm of the quick scan process

Step 1: Start.

Step 2: Select files from the array that needs to be checked against rules.php.

Step 2.1:From rules.php, initialise the array with words.

Set malicious keywords that must not be present in the selected file.

Step 2.2: From rules.php, initialise the array with characters.

Set of malicious characters that must not be present in the selected file.

Step 3: If Step 2.1 or 2.2 is true, move the infected file to quarantine.

Step 4: Replace the infected file with a clean one from the downloaded WordPress directory.

After step 4, the logging function is called again to log activities similar to a full scan.

4.4.5 Module 4: Log Module; To record all full and quick scan incidents.

Documentation of the actions taken is part of understanding and transferring knowledge to

users and administrators. The logging module brings the quantitative report of all actions taken

in a full and quick scan. Here, events defined as ‘Date Time, Scan Type, Corrupted file Char

Count, Original file Char Count, File Name, File Path, File Permission, Action Taken and File

Relation’ are recorded for every file. The code snippet for logging is shown in Figure 05.

The logging module creates a log.csv file with header information during plugin activation. This

file serves as a record for website administrators and cybersecurity analysts to understand the

incident and conduct a thorough investigation. Each time a full scan or quick scan is performed,

the actions taken are appended to the log.csv file.

Figure 05. Code snippet used to generate log.csv file.

21

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

4.4.6 Module 5: Email Module; PHP mail module to send the administrator
quarantined files and log files.

A PHP function called 'wp_mail()' is used to send emails to the administrator during the

installation process. This method helps to keep files even safe as the administrator will have a

backup copy in email. Saving the wp-config.php file is essential because it contains

website-specific information. It is crucial to save the wp-config.php file because it contains

configuration specific to a particular website. If the website is attacked and the wp-config.php file

becomes infected, even if it is in the backup folder, the mailed copy can be used to restore the

old settings instead of relying on a traditional complete backup restoration.

Furthermore, this mailing function is invoked only for the full scan process, sending a quarantine

compressed zip file with the latest log to the website administrator. The mailing process may

cause a short delay due to server traffic and resource availability. To speed up the quick scan

process, the mailing action is not invoked. However, the quick scan logs are still saved and

appended to the log.csv file, which can be retrieved from the ‘Download Log’ button or the

following email of the full scan.

Figure 06. wp-mail() - a PHP mailing code snippet from the WordPress development repository.

Continuing to the next section, the plugin's performance is analysed using a tool called

p3-plugin-profiler, which was developed by the popular hosting and web services company

Godaddy (wpmudev/p3-profiler, 2022).

4.5 Artefact Performance Analysis And Comparison

It is essential to verify the key characteristics of the artefact prior to utilising its capabilities.

Performance analysis is vital before use to ensure that the artefact is compatible in a running

environment. We need to consider how the installation of this tool may affect the core

infrastructure, including its impact on the loading and refresh times of the entire infrastructure.

Figure 8 presents a comprehensive analysis of plugin performance, including runtime by plugin

and the impact on the theme, plugins, and core files. It also includes comparing other plugins

22

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

and the website's loading time before and after the plugin's installation. All the points discussed

are in the test results section below, and the functionality test of detection and other

mechanisms is discussed in the results and evaluation section.

The plugin used for comparison is based on popularity, and result relevance in WordPress

search are listed below:

● Wordfence Security

● Security & Malware scan by CleanTalk

● iThemes Security

● WPScan

● Sucuri

● All-In-One Security (AIOS)

(the profiler tool did not recognise some other popular plugins; hence, it is excluded from

analysis)

Figure 07. The chart represents the time different plugins take for different metrics.

In Figure 07, WP-KeepSoul metrics are highlighted, and the characteristics of WP-KeepSoul vs

other plugins are explained below.

23

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

Total Loading Time: Least among others except for Sucuri Security, with a few milliseconds

more.

Website Loading Time: The metrics are similar to the total loading time.

Theme Loading Time: Wp-keepsoul will impact theme loading time due to the PHP mailing

function.

Core Loading Time: The difference is ignorable but has negligible impact.

Plugin Loading TIme: Here, wp-keepsoul will use the least time to load than all others.

4.6 Building Attack Simulation

The malware collection used in this study was obtained from the GitHub repository (Petrak,

2022), which includes a range of malware samples dating from 2015 to 2022. Many of the

malware samples in the collection were detected by existing anti-malware services. Despite

efforts to combat malware, a significant number of malicious software programs remain active

and continue to cause problems for website administrators. The goal is to deal with real and

catastrophic trojans, which leads to total compromise of the website and makes it

unrecoverable. All the malware were checked against virus total and classified based on

relevant results; some of the types of malware used for testing are:

● Webshell

● Phishing

● Trojan

● Trojan-Downloader

● File Modifier(.htaccess) Multiple Malicious Intention

● Backdoor

● DDoS

● Redirection

● Generic.PHP.malware

● Credential Exporter

We have already discussed the intention and intensity of malware in the literature review and

the methodology section.

24

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

4.7 Attack Simulation

In a real-time environment, the attackers exploit the vulnerabilities in various plugins and upload

or inject malware. In this testing case, an injection script was developed to upload the malicious

zip file and simulate the attack.

4.7.1 First Method: Injection Script Working

Injection code is developed to aid in the testing phase by automating the process of appending

malicious code snippets, rather than manually performing attacks. This helped to inject 3000

malware samples during the testing phase in a short time. The script simulates the injection

process that could occur through attacks such as reverse shell, exploiting a file upload

vulnerability and plugin vulnerability.

To use the injection code, a tester should first place the script and create a lib folder in the root

directory of the target website. They should then add malicious files to the lib folder and run the

inject.PHP script using the domain-specific URL, such as www.example.com/inject.php. It is

important to note that this kind of access can be obtained through an exploit by an attacker or

by a legitimate administrator who has access to their own website and server file system.

The working of script is simple; the PHP script randomly picks a file from the ‘lib’ folder, then

injects it into the target file and exits successfully with a blank page. Conversely, if the target file

is not present in the WordPress directory, it returns ‘Target File Not Found’ as shown in Figure

08 below. Also, this code is developed only to inject for one particular file selected randomly.

Figure 08. Code snippet from inject.PHP script used.

The complete code flow as an algorithm:

Step 1: Define lib path.

Step 2: Define target files for injection.

Step 3: Get the malicious file contents and append them to the target file before the

25

http://www.example.com/inject.php
http://www.example.com/inject.php

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

actual file content // the usual malware working method is simulated.

Step 4: If the target file is not present in the destination,

then return the target file not found.

Step 5: The blank page is loaded if the attack is successful.

Step 6: exit.

4.7.2 Second Method: Manually place specific malware

Malware which uses more than one file and does not get appended but works as an ideal file to

disrupt the regular usage of the website or act as reverse shell, PHP backdoor, or credential

exporter are manually placed by uploading to a particular directory of the website, For example,

20.10.2020 - APT29.

26

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

CHAPTER 5. TEST RESULTS

To effectively test the artefact, it is essential to understand the boundaries and scope of the

testing. The following points outline the scope and test criteria:

● Access to the WordPress dashboard is necessary for the successful execution of the

scanning process.

● Any malware that causes lockout of the admin dashboard is excluded from our project

scope.

5.1 Malware Test Results

The test successfully achieved all the aims and objectives by effectively removing malware,

quarantining it, replacing it with legitimate files, and logging all actions taken. Also, it was able to

detect unwanted files and delete them. The minimum time required to complete detection and

mitigation in the full scan is recorded to be 6.0140249729156 seconds, and the maximum time

consumed is 44.44684792 seconds. The test was conducted by randomly picking 3000 malware

from the (Petrak, 2022) collection and adding it to random files WordPress to test the artefact for

the detection and prevention module of a quick and full scan. Conversely, it was not recorded for

analysis as the classification was too challenging to finish in the timeframe. Despite this, 91 out

of 101 classified malware samples were used for testing, as the others were out of scope as

they targeted the wp-content directory. The analysis of the results will be discussed in the

subsequent evaluation section.

5.1.1 Result Comparison Criteria

Compared with Wordfence, the average scan time that the company says is around 1 to 10

minutes based on the website size (‘Scan’, n.d.). Likewise, Malcare also states, “Guaranteed

WordPress Malware Removal in 5 minutes” (‘WordPress Malware Removal Service - No Wait

Time, 1 Click Malware Cleaner’, n.d.). Most of the solutions available require an active paid

subscription to use. As a result of the limited scope of malware samples utilised, the detection

rates and metrics, such as the time taken for the process, cannot be comprehensively

evaluated. Furthermore, an examination of the official websites and documentation of various

solution providers, including i-Themes, Snap Creek, Clean Talk, WP Vivid, Backup Guard

Security, and Bold Grid, reveals that they do not explicitly provide information regarding the

27

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

duration required for the completion of a scan and proper mitigation; instead, they only mention

the resource requirements for their solutions.

5.1.2 Effects of Malware Before Scan

During the testing phase, some malware made visible changes to the website. Since these were

discovered during the testing phase, it is relevant to mention some of the results in this section.

The figures below (10, 11, 12, and 13) show malware's effects on the site after execution.

Figure 09. 28.01.2021 - index.php malware effects on the testing website.

As shown in Figure 09, the exploit caused the front end of the website to crash, and all previous

content was lost. Although, the dashboard was still accessible while the scan was performed

and the website was cleaned.

Figure 10. 09.03.2022 worker.php malware effects on the testing website.

28

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

worker.php malware creates a form that can be executed on the server's operating system,

which indirectly can take over without harming the website; the website owner will not know

where this malware resides. Advisory can access these just by calling the malicious PHP file.

Figure 11: 08.10.2021 malware effects on the testing website.

Another malicious PHP file that creates the above page overrides the existing wp-content folder

and creates content as website content.

Figure 12. 18.05.2021 malware effects on the testing website.

Malware that denies users access to the page; only if there is access to the dashboard can the

website be recovered by wp-keep-soul or as regular, the administrators must restore to the

previous state of the website.

29

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

Figure 13. 04.02.2022 malware effects on the testing website.

A phishing malware creates a whole new page similar to an excel sheet in the background but

blurs the image with a popup that asks for email and password to end, but this sends an email

to the attacker's mailbox with input credentials.

5.2 Module Test Results

The section is again divided according to the module, and their results are discussed with

relevant result tables and screenshots representing actions and effects of actions taken.

5.2.1 Module 1: Activation Module

The algorithm is already mentioned in the methodology, the functioning of activation is initiated

first, and it creates the required files and folders to function normally. Figure 14 and 15

describes the folders created during activation.

30

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

Figure 14. Creation of directories and downloading WordPress.

As described in the methodology section, directories such as backup, quarantine, and

WordPress are immediately generated when the activate button is pressed, as shown in Figure

14. The main thing to observe is a WordPress-6.1.1.zip file downloaded from git and then

extracted and placed inside the WordPress directory, which supports all the detection.

Figure 15. Creation of directories and downloading WordPress.

31

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

A few seconds after the activation and downloading process, the zip will be deleted, and the

wp-config.txt file appears, which is then used to mail the administrator; a copy will be

automatically stored in the backup folder. Figure 15 shows a screenshot of the administrator's

Gmail account after activating the plugin. The administrator receives a notification containing the

date and time of activation and the wp-config.php file for reference.

5.2.2 Module 2: Full Scan Module

The full scan module's primary functionality is to scan all files, compare them and restore them if

they fall into the algorithm of full scan mentioned in the methodology. The complete full scan

result is mentioned in Appendix D. Results show that all the criteria of the full scan are met, and

the methodology is satisfied by the proper output of a malware-free website. Some of the cases

are listed in Table 05, which shows some examples.

Table 05. Full Scan results, Limited (complete list in Appendix D)

Table 05 is filtered results from a list of 91 different scans based on the scan's malware effects

and success criteria. Even though it detected almost every malware, there were three cases out

of 3091 scans where the WordPress dashboard was hijacked by malware and was unable to

take any actions; all three unsuccessful cases are discussed as follows:

Case 1: 10.02.2022 wp-settings; the malware caused a 500 error (internal server error)

and crashed, it was resolved by manually deleting the infected wp-settings file and

replacing it with a legitimate one.

32

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

Case 2: 12.01.2021 admin.PHP, The second case failed as malware infiltrated the

wp-admin directory, compromising the dashboard. Unable to remove it manually, the

only solution was to restore from a backup.

Case 3: 11.03.2022 wp-blockup.PHP, The malware blocked the dashboard, adding a

script in other admin files, making it impossible to recover manually; the solution was

restoring the entire website from a backup.

All cases, 1, 2, and 3, signify the excellent results of the module, and some limitations

highlighted are in the evaluation and discussion section.

5.2.3 Module 3: Quick Scan Module

The primary function of the quick scan is to examine files for specific characters and keywords

to detect malware; The results were consistent and completely satisfied the requirement. The

mitigations implemented by the quick scan were determined to be effective, resulting in a

thoroughly cleaned website.

Based on the test data utilised, which consisted of 91 instances of malware, it was found that a

significant proportion of these was dependent on the file "index.php". Such malware operates by

being triggered indirectly upon loading the site. Later, a quick scan was performed and

successfully mitigated the malware. Other than the index, files like wp-links-opml.PHP and

wp-blogs.php are scanned and successfully mitigated. Table 06 represents the efficiency of a

quick scan.

33

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

Table 06. Quick Scan Results.

From all the above results, it is clear that Modules 2, 3 and 3.1 work according to the
methodology as scans were successful.

5.2.4 Module 4: Log Module

Another essential function records all the logs of actions. Figure 15 shows the log.csv file

generated during the activation; this file is generated during the activation of the plugin, and

data gets appended whenever the scan happens. Table 07 below represents four distinct types

of entries in the log, which were selected from the malware tested in Modules 2 and 3.

Table 07. Entry of four different cases of logging.

34

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

The first entry in the log pertains to the full scan results of malware detection. It was found that a

file located in the root directory was infected with malware, and the action taken was to remove

it. This entailed deleting the file from the root directory, relocating it to the quarantine folder, and

sending a notification email.

The following quick scan result shows that the suspicious char count field denotes the

characters present in the infected file, and the original char count field says how much it is

according to WordPress. Based on the condition, the action taken is to replace the file with the

original file. As it is a quick scan and it is necessary to show the index.php is what type of file in

the last column, as index.php is also present in many other directories of WordPress.

Sl.No 5 represents the result of another full scan, which is similar to the previous case, but here

‘replaced from the source’ is mentioned to help the log analyser. Nevertheless, from the action

perspective, the file will be replaced from the WordPress directory of the plugin.

In the last row, the result of the full scan shows the action taken as replaced from the backup.

First, the analyser needs to observe that the file wp-config.php is infected, and it is scanned

from the backup folder.

The complete logs of detected malware are presented in Appendix G, and a snapshot from it is

shown in Figure 16.

Figure 16: Snapshot of logs recorded. Appendix G has the complete list.

5.2.5 Module 5: Email Module

The purpose of the email function is to notify the administrator of the website about the

installation of the plugin and also send a copy of the configuration file as a precaution. In the

second phase, the email is to keep a record of the full scan, all the logs and quarantine files.

Figures 17 and 18 below demonstrate the various actions of the email function that are

activated upon initiation. This function sends a message about activation, along with the

wp-config.txt file, to the administrator. As evident from Figure 17, it is observed that the function

is working as expected.

35

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

Figure 17. Email received after plugin activation.

Figure 18: Email received after a full scan.

36

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

Figure 18 shows that scan reports mailed to the administrator contain a log.csv file, which is the

scan log, and a zip file, which is the quarantine of infected files. This email function gets

triggered after the completion of the full scan. The further upgradation that is required for the

mailing function is discussed in challenges and future work.

5.1.7 Artefact in Action

The final development of all the modules led to the output of artefact WP-KeepSoul, which

performed the actions required. The relevant snapshot and the explanation regarding each

figure are discussed below.

Figure 19. WP KeepSoul after activation on the dashboard page.

Figure 19 represents the snapshot from the plugin page of the WordPress dashboard; this is the

first phase after the installation plugin in which the plugin can be activated and deactivated.

Figure 20. WordPress Dashboard Settings panel, which has plugin access.

37

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

Figure 20 represents the settings menu which contains wp-keepsoul. This menu appears in the

side panel, giving access to the complete plugin.

Figure 21. Plugin Page, with Instructions and option to perform a scan and download log.

Figure 21 represents the actual page of the plugin. Here, there are four sections:

Section 1: Heading and mandatory instructions, which has the plugin name and details

about the instruction that must be followed before using the plugin. Here, we mention

moving the custom-developed files to a backup folder.

Section 2: Instructions about the full scan, its working, and output details are mentioned.

Section 3: Details about the quick scan, its limitations to be considered, and working

details are mentioned.

Section 4: Major part of the plugin that gives access to select scan type and a button to

download the log.

38

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

All the relevant details mentioned in each section are already described in the methodology

modules.

Figure 22. Notification after completing Quick Scan with the time taken.

Figure 23. Notification after completing Full Scan with the time taken.

Figures 22 and 23 represent simple WordPress notifications with the time taken to complete a

particular scan that will appear every time after the scan is complete.

The video demonstrating the complete functioning can be found in Appendix C.

39

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

CHAPTER 6. EVALUATION AND DISCUSSION

6.1 Results Evaluation and Limitations Based on Modules

In this section, a thorough and impartial assessment of each module's test results, overall

performance, and outcomes are presented. The primary objective of this analysis is to critically

evaluate the extent to which all objectives have been met, and the effectiveness of the delivered

results of the artefacts. The evaluation will provide valuable insights into the strengths and

weaknesses of the modules, which can inform future improvements and developments.

Furthermore, it will demonstrate the alignment of the modules with the intended goals and

objectives, and the impact of their implementation on the overall project.

6.1.1 Module 1: Activation Module

Results from Figures 14 and 15 show the proper control and functioning of the module, which is

to download a copy and create necessary directories. Figures 14 and 15 from the results

section prove the functioning. However, the plugin requires additional files that add up to 63

megabytes and 3267 inodes which adds to the server resource consumption.

The limitation is that if the hacker takes control of the server and edits the contents in the

backup folder, it will be unavoidable to clear malware as the plugin checks in the backup for

particular files and restores them without matching them to any other source. One potential

limitation of the proposed solution is that if the wp-config.PHP file has been compromised prior

to the installation of the plugin, the plugin may not be able to detect the infection. To address

this concern, future research could explore the implementation of a quick scan feature as a

means of mitigating this issue.

6.1.2 Module 2, 3 & 3.1: Full Scan and Quick Scan Module

Full and Quick scan: Most of the core actions taken and requirements for the proper
functioning of both full scan and quick scan are similar and hence, evaluated together.

The classification of malware used for testing covers almost all types of malware related to

WordPress. The full scan, including the mitigation and recovery of the site, takes an average of

9.28222976 seconds, which is among the fastest solutions that include restoration. Even though

it detects and restores the compromised files quickly, it will not help in being affected again if a

40

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

full-scale attack is performed wipes websites. Table 05 in the methodology section shows the

scan results in which three malware were passed through, and the plugin failed to detect them.

Another noteworthy point is that the wp-content directory is excluded from scanning. However,

this is an area that could be explored further through research and development.

The quick scan module is developed to show another simple and easy way to implement the

detection method. Here, the average scan time is 2.073 seconds; however, this method

comprises the depth and range of detection and increases dependency as only a set of files

with particular keywords are detected using the same functions already present in artefact

Module 3.1 (rules.php) further development can be continued with minimal efforts.

Figure 24. Snapshot of a full scan, representing the average time of a full scan. (Full report is in
Appendix D)

As critical evaluation suggests, the limitations are only in two modules. They are specified in

artefact working condition, and it is a minimum requirement of the plugin to have proper access

to the dashboard to perform the scan. Some malware compromises the dashboard, but the

functions will still be in working condition in the back end. Hence, the cron job or function URL

calling will mitigate the malware in this case. Though, it is impossible to mitigate if the complete

dashboard is compromised and scanning cannot be used from Graphical User Interface (GUI)

or even a scan function called using URL or cron job; hence, a website cannot be recovered.

Quick scan is introduced for the artefact during the literature review by understanding the

JavaScript obfuscation malware and some reported attacks. Limitations are that this method is

version dependent and requires frequent updation of keywords in artefact code to perform scan

successfully. False detection can also arise if the keywords are not updated. The main reason

for implementing the quick scan module is to bring in the scope for future researchers and

developers to help upgrade the detection method by using different classified keywords that can

help with proper detection. The algorithm for a future redesign of the idea is mentioned in future

work.

41

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

6.1.3 Module 4: Log Module

A logging mechanism records all the tool's incidents. Only a small part that can be considered

for evaluation is the creation, deletion and appending to the log.csv file. Initially, the log.csv file

will be created while activating the plugin containing entity headers (highlighted in red in Figure

20) that will be used continuously in the logging process. If the administrator deletes the log.csv,

the next appending log will not have a header, and only data will be present. Also, the download

log button on the admin page needs some modification as it directs to a page with a log that

cannot be used directly. Nevertheless, the current logging mechanism gives detailed information

about actions taken.

Figure 25. Snapshot of scan logs. (Full tabular report is in Appendix G)

It is candidly acknowledged that this issue was identified during the latter stages of the testing

phase, and due to time limitations, it was impossible to implement a solution. Nevertheless, the

potential resolution for this issue is outlined as an area of focus in future research.

6.1.4 Module 5: Email Module

Here, Module 5 is again brought in to give the dimension of future possibilities to developers

and researchers while satisfying the essential requirement of email. The results section shows

that the mail is received and has all the information about activation and scanning with logs and

quarantine files. The email module used is based on the outdated WordPress PHP mailing

function and has known security issues; implementing other modules for email would have

resulted in major changes to the artefact code and required more time, but the necessary

changes are mentioned in future work.

Overall, all the evaluations and limitations discussed above are unbiased and viewed as
a user to understand the critical reflection and to measure future possibilities.

42

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

CHAPTER 7. CONCLUSION AND FUTURE WORK

Generally, as a whole, this study and artefact help the independent website developers and

in-house company web development team, web development agencies, and cyber security

investigators to solve the core malware issue within seconds. The usage of resources is also

considerably less, and version independency provides better flexibility to operate in multiple

sites under the same server without consuming exhausting resources. Using cron jobs will also

help mitigate the malware issue by scanning the site as mentioned in the code of the cron job.

Considering all the module's functioning, the concept aim, objectives and overall implementation

deliver a novel and easy solution to many malware issues in the WordPress platform.

The primary area of future upgradation and scope fall into the quick scan module, email module

and inclusion of the wp-content folder and scanning plugins under full scan. The quick scan

module uses keywords and characters to detect obfuscated files; it needs to be reassigned for

every WordPress release as the code might change during the new version update.

The email module, as discussed, was implemented to bring the possibility inside the artefact,

but it needs upgradation from the PHP module to the other latest module; Although this also

requires changes in different email variables in all other functions of PHP.

To effectively scan for potential threats, it is recommended to include the wp-content folder in

the scanning process. However, this can be challenging as the wp-content directory contains

user information, third-party plugins, and externally stored data, making it challenging to map

the directory to a separate repository. To address this issue, developers can include the

wp-content folder in the scan while testing. A comparison function can be developed in the

future with a dataset of all relevant files with character count, which will be utilised to match in a

quick scan. If a change is detected, the developer can download the particular file from the

backup or relevant sources rather than the entire plugin library. While this may increase scan

completion time and use more resources, it provides a dependable solution rather than relying

on anti-malware plugins. This artefact helps users, developers, cybersecurity professionals, and

companies keep their websites safe and secure.

43

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

CHAPTER 8. APPENDIX LIST

A. Installation Instruction

1. Download the plugin from the link:
https://prbhat.com/wp-content/uploads/2022/12/wp-keepsoul.zip

2. Upload it to the WordPress website from the dashboard and wait till the upload
completes

3. After installation, activate plugin
4. After the activation, navigate to Settings → WP KeepSoul to access plugin
5. Read the instructions and scroll down
6. Choose Quick or Full Scan based on requirement from Dropdown
7. Check the log using the Download Log button.

B. Source Code Link: https://gitlab.uwe.ac.uk/p2-praneethraj/wp-keepsoul

C. Walkthrough Video Link: https://youtu.be/E_WOklVnIH8

D. Malware scan report - filtered as full scan with malware classification

E. Malware scan report - filtered for quick scan with malware classification.

F. Record of supervisor meetings. schedule and notes.

G. Scan log from the testing environment - Combined full scan & quick scan.

44

https://prbhat.com/wp-content/uploads/2022/12/wp-keepsoul.zip
https://gitlab.uwe.ac.uk/p2-praneethraj/wp-keepsoul
https://youtu.be/E_WOklVnIH8

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

CHAPTER 9. REFERENCES

1. AL-Taharwa, I.A., Lee, H.-M., Jeng, A.B., Wu, K.-P., Mao, C.-H., Wei, T.-E. and Chen,

S.-M. (2012) RedJsod: A Readable JavaScript Obfuscation Detector Using

Semantic-based Analysis IEEE Xplore.1 June 2012 [online]. 1370–1375. Available from:

https://ieeexplore.ieee.org/document/6296140 [Accessed 3 November 2022].

2. Alazab, A., Khraisat, A., Alazab, M. and Singh, S. (2022) Detection of Obfuscated

Malicious JavaScript Code. Future Internet. [online]. 14 (8), p.217. Available from:

https://www.mdpi.com/1999-5903/14/8/217/pdf [Accessed 3 September 2022].

3. ‘Backdoor.PHP.WEBSHELL.SBJKXRY - Threat Encyclopedia - Trend Micro BE’ (2022)

www.trendmicro.com.19 January 2022 [online]. Available from:

https://www.trendmicro.com/vinfo/be/threat-encyclopedia/malware/backdoor.php.webshe

ll.sbjkxry/ [Accessed 19 December 2022].

4. Blackbourn, J. (2022) WordPress Email Documentation GitHub.3 November 2022

[online]. Available from: https://github.com/johnbillion/wp_mail [Accessed 27 December

2022].

5. Cernica, I., Popescu, N. and ţigănoaia, B. (2019) Security Evaluation of Wordpress

Backup Plugins IEEE Xplore.1 May 2019 [online]. 312–316. Available from:

https://ieeexplore.ieee.org/abstract/document/8744951 [Accessed 9 March 2022].

6. ‘Clear Command History - Red Team Notes 2.0’ (2022) Gitbook.io.2022 [online].

Available from:

https://dmcxblue.gitbook.io/red-team-notes-2-0/red-team-techniques/defense-evasion/t1

070-indicator-removal-on-host/clear-command-history [Accessed 6 December 2022].

7. Dalili, S. (2012) File in the hole secproject.com.1 November 2012 [online]. HackPra.

Available from:

https://soroush.secproject.com/downloadable/File%20in%20the%20hole!.pdf [Accessed

14 October 2022].

8. Duncan, B. (2015) InfoSec Handlers Diary Blog SANS Internet Storm Center.16

September 2015 [online]. Available from:

https://isc.sans.edu/diary/Malicious+spam+with+zip+attachments+containing+.js+files/20

153 [Accessed 9 October 2022].

9. Expert, W.S. (2018a) How to Scan & Detect Malware in WordPress Theme - 2022 WP

Hacked Help Blog - WordPress Security Knowledgebase.17 April 2018 [online].

45

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

Available from:

https://secure.wphackedhelp.com/blog/scan-wordpress-theme-for-malware-malicious-co

de/ [Accessed 1 December 2022].

10. Expert, W.S. (2020) Spam Links Injection in WordPress Site - Removal Guide [2022] WP

Hacked Help Blog - WordPress Security Knowledgebase.7 May 2020 [online]. Available

from: https://secure.wphackedhelp.com/blog/spam-link-injection-wordpress/ [Accessed

14 November 2022].

11. Expert, W.S. (2018b) WordPress Malware Redirect Hack - How To Fix Guide [2022] WP

Hacked Help Blog - WordPress Security Knowledgebase.23 May 2018 [online]. Available

from: https://secure.wphackedhelp.com/blog/wordpress-malware-redirect-hack-cleanup/

[Accessed 15 November 2022].

12. Fang, Y., Huang, C., Su, Y. and Qiu, Y. (2020) Detecting malicious JavaScript code

based on semantic analysis. Computers & Security. [online]. 93, p.101764.

13. Fass, A., Backes, M. and Stock, B. (2019) HideNoSeek. Proceedings of the 2019 ACM

SIGSAC Conference on Computer and Communications Security. [online].

14. Fass, A., Krawczyk, R.P., Backes, M. and Stock, B. (2018) JaSt: Fully Syntactic

Detection of Malicious (Obfuscated) JavaScript. Detection of Intrusions and Malware,

and Vulnerability Assessment. [online]. pp.303–325.

15. ‘Finding and Removing Spam Links’ (2019) Wordfence.16 September 2019 [online].

Available from:

https://www.wordfence.com/learn/removing-spam-links-wordpress/#finding-and-removin

g-spam-links [Accessed 26 October 2022].

16. fm.brianleejackson (2011) Deep Look Into the WordPress Market Share (2019) Kinsta

Managed WordPress Hosting.2011 [online]. Available from:

https://kinsta.com/wordpress-market-share/.

17. Garand, MacLeod, Martin, Anjos and Sinegubko (2021) Hacked Websites Trend Report

2021 Sucuri.2021 [online]. Available from:

https://sucuri.net/reports/2021-hacked-website-report/ [Accessed 12 November 2022].

18. Gorji, A. and Abadi, M. (2014) Detecting Obfuscated JavaScript Malware Using

Sequences of Internal Function Calls. Proceedings of the 2014 ACM Southeast Regional

Conference. [online].

19. Gupta, S. and Gupta, B.B. (2016a) CSSXC: Context-sensitive Sanitization Framework

for Web Applications against XSS Vulnerabilities in Cloud Environments. Procedia

Computer Science. [online]. 85, pp.198–205.

46

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

20. Gupta, S. and Gupta, B.B. (2016b) Enhanced XSS Defensive Framework for Web

Applications Deployed in the Virtual Machines of Cloud Computing Environment.

Procedia Technology. [online]. 24, pp.1595–1602.

21. He, X., Xu, L. and Cha, C. (2018) Malicious JavaScript Code Detection Based on Hybrid

Analysis IEEE Xplore.1 December 2018 [online]. 365–374. Available from:

https://ieeexplore.ieee.org/document/8719574 [Accessed 3 November 2022].

22. hungered (2009) Secure File Upload Check List With PHP Hungred Dot Com.17 August

2009 [online]. Available from:

https://www.hungred.com/useful-information/secure-file-upload-check-list-php/

[Accessed 14 October 2022].

23. Investigation, F.B. (2016) GRIZZLY STEPPE -Russian Malicious Cyber Activity [online].

Available from:

https://www.cisa.gov/uscert/sites/default/files/publications/JAR_16-20296A_GRIZZLY%2

0STEPPE-2016-1229.pdf.

24. junaidtk (2020) How to create a basic Cron job scheduling in WP Gist.2020 [online].

Available from: https://gist.github.com/junaidtk/941c9cb8b1b12eab2d90014a85d50a45

[Accessed 27 December 2022].

25. kamermans (2015) PHP time() vs microtime() vs microtime(true) benchmark Gist.2015

[online]. Available from: https://gist.github.com/kamermans/04d3e557efca29bf2123

[Accessed 27 December 2022].

26. Karl (2017) A Thousand Monkeys Writing a JavaScript Malware Downloader:

De-obfuscating the JavaScript Malware Musings.18 January 2017 [online]. Available

from:

https://malwaremusings.com/2017/01/19/a-thousand-monkeys-writing-a-javascript-malw

are-downloader-de-obfuscating-the-javascript/ [Accessed 21 October 2022].

27. Kasturi, R.P., Fuller, J., Sun, Y., Chabklo, O., Rodriguez, A., Park, J. and Saltaformaggio,

B. (2022) Mistrust Plugins You Must: A {Large-Scale} Study Of Malicious Plugins In

{WordPress} Marketplaces www.usenix.org.2022 [online]. 161–178. Available from:

https://www.usenix.org/conference/usenixsecurity22/presentation/kasturi [Accessed 10

November 2022].

28. Kino, K. (2021) PHP Malware Used in Lucky Visitor Scam JPCERT/CC Eyes.4 June

2021 [online]. Available from: https://blogs.jpcert.or.jp/en/2021/06/php_malware.html

[Accessed 20 December 2022].

47

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

29. KL, A. (2022) What Is Arbitrary File Upload Vulnerability? How To Protect Form It? The

Sec Master.12 April 2022 [online]. Available from:

https://thesecmaster.com/what-is-arbitrary-file-upload-vulnerability-how-to-protect-form-it/

[Accessed 20 October 2022].

30. ‘Kovter & Miuref/Boaxxe Infections | Inside a Malspam Operation’ (2015)

https://cofense.com/.11 September 2015 [online]. Available from:

https://cofense.com/a-peek-inside-an-affiliates-malspam-operation-kovter-and-miurefboa

xxe-infections/ [Accessed 9 October 2022].

31. Livshits, C.C.B., Zorn, B. and Seifert, C. (2010) Zozzle: Low-overhead Mostly Static

JavaScript Malware Detection www.microsoft.com.26 November 2010 [online]. Available

from:

https://www.microsoft.com/en-us/research/publication/zozzle-low-overhead-mostly-static-

javascript-malware-detection/.

32. luke (2020) SCP-173 PHP Malware + WordPress | Cybersecurity Research SCP-173

PHP Malware + WordPress.12 October 2020 [online]. Available from:

https://lukeleal.com/research/posts/scp-173-malware/ [Accessed 19 December 2022].

33. marcosnakamine (no date) WordPress - Send mail wp_mail with attachment Gist.

[online]. Available from:

https://gist.github.com/marcosnakamine/9443303c340ef30ee3bac0f6d8eac95b

[Accessed 27 December 2022].

34. Md, M.H., Sarker, K., Biswas, S. and Md, H.S. (2017) Detection of Wordpress Content

Injection Vulnerability. International Journal on Cybernetics & Informatics. [online]. 6 (5),

pp.1–15.

35. Mesa, O., Vieira, R., Viana, M., Durelli, V.H.S., Cirilo, E., Kalinowski, M. and Lucena, C.

(2018) Understanding vulnerabilities in plugin-based web systems. Proceeedings of the

22nd International Conference on Systems and Software Product Line - SPLC ’18.

[online].

36. Milan (2021) Minimum WordPress Server Requirements WP Thinker.20 September

2021 [online]. Available from:

https://wpthinker.com/minimum-wordpress-server-requirements/ [Accessed 24

December 2022].

37. Moog, M., Demmel, M., Backes, M. and Fass, A. (2021) Statically Detecting JavaScript

Obfuscation and Minification Techniques in the Wild IEEE Xplore.1 June 2021 [online].

48

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

569–580. Available from: https://ieeexplore.ieee.org/document/9505063 [Accessed 27

September 2022].

38. Moran, M. (2022) WordPress Hacking Statistics (How Many Websites Get Hacked?)

Colorlib.23 October 2022 [online]. Available from:

https://colorlib.com/wp/wordpress-hacking-statistics/ [Accessed 25 December 2022].

39. OWASP, Dalili, S., Wetter, D. and Mayo, L. (2020) Unrestricted File Upload | OWASP

owasp.org.5 September 2020 [online]. Available from:

https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload [Accessed

10 August 2022].

40. Patil, D.R. and Patil, J.B. (2017) Detection of Malicious JavaScript Code in Web Pages.

Indian Journal of Science and Technology. [online]. 10 (19), pp.1–12.

41. Pejcic, S. (2022a) Malware Scanner cPanel plugin GitHub.12 October 2022 [online].

Available from: https://github.com/stefanpejcic/malware-scanner-cpanel-plugin

[Accessed 10 December 2022].

42. Pejcic, S. (2022b) Simple Virus Scanner cPanel plugin GitHub.12 October 2022 [online].

Available from: https://github.com/stefanpejcic/simple-virus-scanner-cpanel-plugin

[Accessed 10 December 2022].

43. Pejcic, S. (2022c) WordPress Malware GitHub.6 December 2022 [online]. Available

from: https://github.com/stefanpejcic/wordpress-malware [Accessed 10 December 2022].

44. Petrak, H. (2022) Javascript Malware Collection GitHub.26 November 2022 [online].

Available from: https://github.com/HynekPetrak/javascript-malware-collection [Accessed

27 November 2022].

45. ‘php.hacktool.mailer.010’ (2019) Sucuri Labs.1 April 2019 [online]. Available from:

https://labs.sucuri.net/signatures/malwares/php.hacktool.mailer.010/ [Accessed 19

December 2022].

46. portswigger (no date) File uploads | Web Security Academy portswigger.net. [online].

Available from: https://portswigger.net/web-security/file-upload.

47. Rees, K. (2022) Over 15,000 WordPress Sites Affected in Malicious SEO Campaign

MUO.15 November 2022 [online]. Available from:

https://www.makeuseof.com/15000-wordpress-sites-affected-in-malicious-seo-campaign/

[Accessed 9 December 2022].

48. Ročevas, Š. (2021) 7 SDKs to Send Emails in Your Favorite Programming Language

MailerSend.23 September 2021 [online]. Available from:

49

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

https://www.mailersend.com/blog/send-emails-in-your-favorite-programming-language

[Accessed 23 December 2022].

49. ‘Scan’ (no date) Wordfence. [online]. Available from:

https://www.wordfence.com/help/scan/ [Accessed 23 December 2022].

50. Shah, A. (2016) Malicious JavaScript Detection using Statistical Language Model.

Master’s Projects. [online]. Available from:

https://scholarworks.sjsu.edu/etd_projects/476/ [Accessed 10 November 2022].

51. Sohan, Md.F. and Basalamah, A. (2020) A Systematic Literature Review and Quality

Analysis of Javascript Malware Detection. IEEE Access. [online]. 8 (2169–3536),

pp.190539–190552.

52. Su, J., Yoshioka, K., Shikata, J. and Matsumoto, T. (2016) An Efficient Method for

Detecting Obfuscated Suspicious JavaScript Based on Text Pattern Analysis.

Proceedings of the 2016 ACM International on Workshop on Traffic Measurements for

Cybersecurity. [online].

53. Tuca, A. (2022) Which Type of Website Can Be Built Using WordPress? 10 Ideas for

2022 ThemeIsle Blog.2 May 2022 [online]. Available from:

https://themeisle.com/blog/which-type-of-website-can-be-built-using-wordpress/

[Accessed 25 December 2022].

54. Ullrich, J. (2009) SANS Institute | 8 Basic Rules to Implement Secure File Uploads |

SANS Institute www.sans.org.28 December 2009 [online]. Available from:

https://www.sans.org/blog/8-basic-rules-to-implement-secure-file-uploads/ [Accessed 14

October 2022].

55. ‘VirusTotal’ (no date) www.virustotal.com. [online]. Available from:

https://www.virustotal.com/gui/file/61d702610d6ae9a0a494695186843ac2d7e2aea19b8

417d6e7961e1a9b648e3b [Accessed 24 December 2022].

56. W3Techs (no date) Usage Statistics and Market Share of Content Management Systems

w3techs.com. [online]. Available from:

https://w3techs.com/technologies/overview/content_management.

57. ‘What is WordPress? A Beginner’s Guide (FAQs + Pros and Cons)’ (2020)

www.wpbeginner.com.19 August 2020 [online]. Available from:

https://www.wpbeginner.com/beginners-guide/what-is-wordpress/.

58. Williams, L., Massacci, F. and Gary (2021) Secure Software Lifecycle Knowledge Area

Version [online]. Available from:

50

PRANEETHRAJ W
P KEEPSOUL V

ers
ion

 1.
0

https://www.cybok.org/media/downloads/Secure_Software_Lifecycle_v1.0.2.pdf

[Accessed 25 December 2022].

59. Wilson, U. (2022) devuri/wp-admin-page GitHub.10 February 2022 [online]. Available

from: https://github.com/devuri/wp-admin-page [Accessed 27 December 2022].

60. ‘WordPress Malware Removal Service - No Wait Time, 1 Click Malware Cleaner’ (no

date) Malcare. [online]. Available from:

https://www.malcare.com/wordpress-malware-removal/.

61. ‘wp_mail() | Function’ (no date) WordPress Developer Resources. [online]. Available

from: https://developer.wordpress.org/reference/functions/wp_mail/ [Accessed 9

December 2022].

62. ‘wpmudev/p3-profiler’ (2022) GitHub.18 October 2022 [online]. Available from:

https://github.com/wpmudev/p3-profiler [Accessed 10 December 2022].

63. Wu, H. and Qin, S. (2017) Detecting obfuscated suspicious JavaScript based on

collaborative training IEEE Xplore.1 October 2017 [online]. 1962–1966. Available from:

https://ieeexplore.ieee.org/document/8359972 [Accessed 3 November 2022].

51

